
J
H
E
P
1
2
(
2
0
0
6
)
0
3
1

Published by Institute of Physics Publishing for SISSA

Received: October 13, 2006

Accepted: November 21, 2006

Published: December 11, 2006

Dielectric (p,q) strings in a throat

Hassan Firouzjahi

Physics Department, McGill University

3600 University Street, Montreal, Canada, H3A 2T8

E-mail: firouz@physics.mcgill.ca

Abstract: We calculate the (p,q) string spectrum in a warped deformed conifold using

the dielectric brane method. The spectrum is shown to have the same functional form

as in the dual picture of a wrapped D3-brane with electric and magnetic fluxes on its

world volume. The agreement is exact in the limit where q is large. We also calculate the

dielectric spectrum in the S-dual picture. The spectrum in the S-dual picture has the same

form as in the original picture but it is not exactly S-dual invariant due to an interchange

of Casimirs of the non-Abelian gauge symmetries. We argue that in order to restore S-

duality invariance the non-Abelian brane action should be refined, probably by a better

prescription for the non-Abelian trace operation.

Keywords: String theory and cosmic strings, String Duality, D-branes.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep122006031/jhep122006031.pdf

mailto:firouz@physics.mcgill.ca
http://jhep.sissa.it/stdsearch


J
H
E
P
1
2
(
2
0
0
6
)
0
3
1

Contents

1. Introduction 1

2. The warped deformed conifold 3

3. The dielectric (p,q) strings 4

4. The dielectric (p,q) strings in the S-dual picture 9

5. Discussion 11

1. Introduction

Recent observations strongly support inflation as the origin of the universe and the structure

formation [1]. Despite its impressive success in explaining a host of observational data such

as the CMB power spectrum and in solving conceptual puzzles such as the flatness and

the horizon problems, the inflationary scenario is still at the phenomenological level. The

origin of the inflation and the nature of the inflaton field is not known from a fundamental

theory point of view. String theory, on the other hand, is a consistent theory of quantum

gravity which is yet to be tested. The energy scale of inflation was probably so high that

quantum gravity effects were important, either directly or indirectly. It seems reasonable

to expect that string theory, assuming it to be relevant to our universe, will yield many

insights into the nature of inflation. If this notion turns out to be true, it would be a

unique chance to test the relevance of string theory to our universe.

String theory is a higher dimensional theory. After compactification to four dimensions,

many scalar fields or moduli will show up in low energy theory. This has both positive

and negative sides. The positive side is that some of these moduli may play the role of the

inflation field. In this view, inflation is a natural feature of string theory compactifications.

The negative side is that usually many of these moduli will roll quickly. This may violate

the slow roll conditions, required for slow roll based inflation. Furthermore, if they are not

stabilized and roll quickly they may modify the expansion history of the universe. This can

destroy the success of the late time big bang cosmology such as the predictions of the big

bang nucleosynthesis for the abundance of the light elements. In this regard the moduli

stabilization is a key issue in string cosmology.

There has been interesting progress in moduli stabilization [2 – 4]. By turning on

fluxes it was shown in [3] that, in principle, all complex structures can be stabilized.

Some non-perturbative mechanisms are used in [4] to stabilize the Kahler modulus, the
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field corresponding to the overall size of the Calabi-Yau (CY) compactification. In the

constructions of [3] and [4] there are localized regions inside CY where the geometry of

the space-time is warped similar to Randall-Sundrum scenario [5]. The particular model

studied is the warped deformed conifold solution of Klebanov-Strassler (KS) [6] glued

smoothly to the bulk of the CY manifold. In the language of Randall-Sundrum, the IR

region is the bottom of the conifold whereas the UV region is the place where the conifold

is smoothly glued to the bulk. The hierarchy of scales between IR and UV is exponentially

sensitive to the ratio of fluxes. This way a huge hierarchy of scales can be created with

minor tuning of fluxes.

An interesting mechanism to obtain inflation in this set up is to use the brane-antibrane

inflationary scenario [7, 8] inside the KS throat [9, 10]. The D3-brane is sitting at the IR

region of the throat while the D3-brane is moving toward it inside the throat. Due to warp

factor, the potential between D3-D3 becomes flat enough that the slow roll conditions can

easily be satisfied. However, the extra contribution from the Kahler modulus of the CY

compactification to the inflationary potential conflicts with the slow conditions. It was

argued in [9] that a fine-tuning of order one percent is required to keep the inflationary

potential flat. Inflation ends when brane and anitbrane annihilate each other and this

annihilation releases the energy to reheat the universe. After the branes annihilation,

fundamental strings( F-strings) and D1-brane(D-strings) are copiously produced. These

F and D strings have cosmological size and appear as cosmic strings [11 – 13]. The range

of their tension is compatible with the recent observations [14 – 16]. The cosmic strings

tension in these models is high enough to be detected in near future gravity wave search

[17]. Detecting cosmic strings would go a long way in support of brane inflation and string

theory.

Since the branes annihilation takes place in the IR region of the KS throat, the cosmic

strings are localized in this region, near the tip of the KS throat. The spectrum of cosmic

strings is a rich combination of bound states of F and D-strings. It is an interesting question

to understand the spectrum of (p, q) strings, the bound states of p F and q D-strings on

top of each other at the tip of the throat. This question was studied recently in [18]. In

this method, (p, q) strings were viewed as a D3-brane with p units of electric flux and q

units of magnetic flux in its world volume, wrapping a two-sphere inside the three-sphere

at the tip of the KS throat. The (p, q) spectrum was shown to be in agreement with the flat

space formula. Furthermore, in the case q = 0 it reproduces the result of [25] for tension

spectrum of p F-stings in SU(M) gauge theory.

One may try to calculate the (p, q) spectrum directly, using the dielectric brane method

[19]. In this picture, q D-strings on top of each other blow up into a fuzzy D3-brane, while

the fundamental strings are viewed as p units of electric flux on D-strings world volume.

The extra two coordinates on the world volume of the fuzzy D3-brane corresponds to the

positions of q D-strings in the orthogonal directions. These orthogonal dimensions span a

two-sphere inside the three-sphere at the tip of the throat. In a sense, the dielectric brane

method of calculating the (p, q) spectrum is the reverse direction of calculating the (p, q)

spectrum using the wrapped D3-brane method in [18]. In general, one expect that for large

q these two methods give the same result for the spectrum [19, 20].
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The paper is organized as follows. In next section we briefly review the KS throat. In

section 3 the (p, q) spectrum is calculated using the dielectric brane method. In section 4

this calculation is carried on for the S-dual background of KS throat. The Conclusions are

given in section 5.

2. The warped deformed conifold

In this section we briefly review the warped deformed conifold. A cone is defined by the

following equation in C4 [21]

4
∑

i=1

w2
i = 0 . (2.1)

This describes a smooth surface apart from the point wi = 0. The base of the cone is given

by the intersection of eq. (2.1) with a sphere of radius r in R8,

∑

i

|wi|2 = r2

We are interested in Ricci-flat metrics on the cone which in turn imply that the base of

the conifold is a Sasaki-Einstein manifold. The simplest five dimensional Sasaki-Einstein

manifold for N = 1 supersymmetry is T 1,1 and it is the only manifold for which the

deformation is explicitly known [6].

The metric on the conifold with base T 1,1 is

ds2
6 = dr2 + r2ds2

T 1,1 (2.2)

ds2
T 1,1 =

1

9
( dψ +

2
∑

i=1

cos θi dφi )2 +
1

6

2
∑

i=1

( dθ2
i + sin2 θi dφ2

i ) .

It can be shown that T 1,1 has topology of S2 × S3 with S2 fibered over S3. If ϕ1 and ϕ2

are the two Euler angles of the two S3’s, respectively, then their difference corresponds to

U(1) while ψ = ϕ1 + ϕ2. Since 2π ≥ ϕi ≥ 0, the range of ψ is [0, 4π].

The Klebanov-Strassler throat that we are interested in is actually a warped deformed

conifold. This warped deformed conifold emerges in the presence of fluxes. The R-R flux

F3 wraps the S3 at the bottom of the deformed conifold, while NS-NS flux H3 wraps the

dual 3-cycle B that generates the warped throat

1

4π2α′

∫

B
H3 = −K,

1

4π2α′

∫

S3

F3 = M .

(2.3)

The metric of the deformed conifold is studied in [22 – 24]. At the tip of the deformed

conifold one S2 shrinks to zero size and the internal geometry reduces to a round S3. At

the tip the metric is given by

ds2 ∼ h2 ηµνdxµdxν + b gsMα′(dψ2 + sin2 ψ dΩ2
2) (2.4)
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where h is the warp factor at the bottom of the throat

h = ε2/32−1/6a
−1/4
0 (gsMα′)−1/2 (2.5)

where a0 ∼ .72 and b = 22/33−1/3I(0)1/2 ∼ 0.93 are numerical constants in the KS solution

and ε1/3 is the deformation radius. Here ψ is the usual azimuthal coordinate in a S3 ranging

from 0 to π.

There are M units of RR 3-forms F3 on the non-vanishing S3 cycle at the tip of the

throat. Its associated two form is given by

C(2) = Mα′

(

ψ − sin(2ψ)

2

)

sin θ dθ dφ . (2.6)

In KS solution C0 = 0 and at the bottom of the throat Bab = 0. Furthermore, on the

gauge theory side M corresponds to SU(M) gauge theory living at the tip of the conifold.

3. The dielectric (p,q) strings

One may consider to obtain the bound states of (p, q) strings directly [26], using the non-

commutative dielectric brane method prescribed by Myers [19]. Upon expansion, the results

of [26] were in agreements with the results of [18] up to order 1/M2. It is an interesting

exercise to see wether there is also an exact agreement between the non-commutative

dielectric brane method and the dual method of wrapped D3-brane used in [18].

When N p-branes are located on top of each other, the ground state of open strings

attached between them becomes massless and the U(1)N symmetry associated with N

individual branes is enhanced to U(N). The gauge field vector Aa becomes non-Abelian

and

Aa = A(n)
a Tn , Fab = ∂aAb − ∂bAa + i[Aa, Ab] , (3.1)

where Tn are N2 Hermitian generators with Tr(TnTm) = Nδnm. The orthogonal displace-

ments of branes, Φi, are now matrix valued and transform in the adjoint of U(N) with

DaΦ
i = ∂aΦ

i + i[Aa,Φ
i] . (3.2)

The non-Abelian action of N coincident p-branes is given by S = SDBI + SCS , where

[19]

SDBI =−µp

∫

dp+1σSTr

(

e−φ
√

det(Qi
j)

√

− det (P [Eab + Eai(Q−1 − δ)ijEjb] + λFab)

)

(3.3)

and

SCS = µp

∫

STr
(

P
[

eiλ iΦiΦ(
∑

C(n) eB)
]

eλ F
)

. (3.4)

In these expressions, λ = 2πα′, µp is the p-brane charge, EMN = gMN + BMN , Qi
j ≡

δi
j + iλ [Φi,Φk]Ekj and Φi is the branes location along the orthogonal direction xi. In the
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conventions of [19], xi = λΦi, so that Φi has dimensions of mass. The indices a, b, ... are

along the brane world-volume directions, while i, j, ... represents the directions orthogonal

to the branes. The operation STr corresponds to the trace of symmetrised pairing of the

non-Abelian fields Fab and Φi [27]. All induced quantities are the pull-backs of space-time

tensors on the brane.

In SCS, the operator iΦ denotes the interior product acting on an n-form C(n) =
1
n!C

(n)
M1...Mn

dxM1 ...dxMn and

iΦiΦC(n) =
1

2(n − 2)!
[Φi,Φj ]C

(n)
jiM3···Mn

dxM3 · · · dxMn . (3.5)

To calculate the (p, q) spectrum, one can turn on p units of U(1) electric field on the

world volume of q coincident D1-branes. We take the D1-branes to be extended in the

(t, xµ) direction and the only relevant component of Fab is F0µ. Furthermore, at the tip of

KS throat BMN = 0 and EMN = gMN . The only non-zero term in SCS is the term coming

from the operation of iΦ on C(2).

With these assumptions the action of q D1-branes with electric fields on their world

volumes is

S =

∫

d t d xµ

[

−µ1

gs

√

h2 − λ2F 2
0µ STr

√

det(Qi
j) +

iλ

2
F0µ STr

(

[Φi,Φj]C
(2)
ji

)

.

]

(3.6)

To simplify the algebra it is useful to write the above action in the form

S =

∫

d t d xµ
[

−∆
√

h4 − λ2F 2
µ0 + ΩF0µ

]

, (3.7)

with

∆ ≡ −µ1

gs
STr

√

det(Qi
j) , Ω ≡ iλ

2
STr

(

[Φi,Φj ]C
(2)
ji

)

(3.8)

The conjugate momentum associate with the electric field is

D =
δL

δF0µ
=

∆λ2F0µ
√

h4 − λ2F 2
µ0

+ Ω . (3.9)

Using this expression to eliminate F0µ, the Hamiltonian is [18]

H = DFµ0 − L

=
h2

λ

√

∆2λ2 + (D − Ω)2 (3.10)

Our goal is to calculate ∆ and Ω for the model at hand and plug them in the above expres-

sion for the Hamiltonian. Furthermore, since the F-strings in (p, q) strings are associated

with the electric fields this means D = p.

Motivated by the dual wrapped D3-brane picture, we expect that q D1-branes blow

up into a fuzzy D3-brane. This fuzzy D3-brane wraps a two sphere inside the S3 at the

tip of the deformed conifold. The transverse coordinates xi span the surface of this two
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sphere, so Φi belongs to a q-dimensional representation of the SU(2) algebra. We take the

following ansatz for the transverse coordinates [28]

Φi = R̂ αi (3.11)

where the constant R̂ with dimension mass will be determined later and αi are the q × q

dimensional matrix representation of SU(2) algebra

[αi, αj ] = 2iεijkα
k (3.12)

It is important to realize that the metric on the space spanned by the transverse

coordinates xi is flat and gkj = δkj. The radius of this S2 is basically the same as the

radius of S2 given in eq. (2.4), i.e.

R2 =
3

∑

i=1

(xi)2 = b gsM α′ sin2 ψ (3.13)

On the other hand

R2 =
λ2

q

3
∑

i=1

Tr[(Φi)2] = λ2CR̂2 (3.14)

which can be used to fix the constant R̂

R̂ =
R

λ
√

C
. (3.15)

Here C is the Casimir of the representation. For q-dimensional irreducible representation

of SU(2) which will be used in our calculation, C = Cq = q2 − 1.

With these assumptions, we obtain

Qi
j = δi

j − 2εijkλR̂Φk (3.16)

and

det(Qi
j) = 1 + 4λ2 R̂2

3
∑

i=1

(Φi)2 + ... (3.17)

where the extra terms in eq. (3.17) are terms which are not symmetric under exchange of

Φi and do not contribute in STr operation. One finds

∆ =
µ1

gs
STr

√

det(Qi
j) =

µ1

gs

(

1 + 4λ2 R̂2
3

∑

i=1

(Φi)2

)1/2

=
q

λgs

(

1 + (
bgsM

π
√

Cq

)2 sin4 ψ

)1/2

(3.18)

where in the last line the relation µ = λ−1 is used and R is given by eq. (3.13).
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To calculate Ω, one needs to transform C(2) in eq. (2.6) from C
(2)
θφ components into the

Cartesian coordinates C
(2)
ij . For example, to calculate C

(2)
12 , we have

C12 =

(

∂ θ

∂x1

∂ φ

∂x2
+

∂ φ

∂x1

∂ θ

∂x2

)

Cθφ

=
x3 Cθφ

R2
√

(x2
1 + x2

2)
(3.19)

Performing this coordinate transformation one obtains

(

C
(2)
12 , C

(2)
23 , C

(2)
31

)

=
λ

R3
Mα′(ψ − 1

2
sin 2ψ) (Φ3,Φ1,Φ2) (3.20)

and

εijkΦ
kC

(2)
ij =

2

λR
(ψ − 1

2
sin 2ψ) Iq (3.21)

where Iq is the q-dimensioanl unit matrix. This gives

Ω =
iλ

2
STr

(

[Φi,Φj ]C
(2)
ji

)

=
qM

π
√

Cq

(ψ − 1

2
sin 2ψ) (3.22)

Having calculated ∆ and Ω and setting D = p, we can use eq. (3.10) to calculate the

Hamiltonian of the system

H =
h2

λ





q2

g2
s

+
1

1 − 1/q2

b2M2

π2
sin4 ψ +

[

p − 1
√

1 − 1/q2

M

π

(

ψ − sin 2ψ

2

)

]2




1/2

(3.23)

The stable solutions, obtained by minimizing the Hamiltonian, are

(

ψ +
b2 − 1

2
sin 2ψ

)

=
√

1 − 1/q2
p π

M
(3.24)

and the energy of the (p, q) system, T(p,q) , is

T(p,q) = Hmin =
h2

λ

(

q2

g2
s

+
1

1 − 1/q2

b2M2

π2
sin2 ψ

(

1 + (b2 − 1) cos2 ψ
)

)1/2

(3.25)

where ψ is given by the minimization equation (3.24).

In the limit that b2 − 1 → 0, the stable solutions are given by

ψ =
√

1 − 1/q2
p π

M
(3.26)

and the energy of the system is

T(p,q) =
h2

λ

√

√

√

√

q2

g2
s

+ b2

(

M

π
√

1 − 1/q2

)2

sin2

(

π
√

1 − 1/q2

M
p

)

(3.27)
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Now we can compare the above energy spectrum of non-commutative (p, q) strings

with the result of the dual method of wrapped D3-brane in [18]. In this method the

bound states of (p,q) strings are interpreted as a D3-brane with world volume electric and

magnetic fluxes wrapping some two cycles inside the three sphere at the bottom of the KS

throat. The flux configurations on a D3 wrapping a 2-cycle that can induce the charge of

p F-strings and q D-strings are

F̃ 0µ = − p

4π
Fθφ =

q

2
(3.28)

where F̃ is the conjugate field associated with the electric field given by F̃µν = −δL/δFµν .

The D3-brane action is

SD3 = −µ3

gs

∫

d4ξ
√

−|gab + Fab| + µ3

∫

C(2) ∧ F , (3.29)

where Fab = Bab + λFab.

After integrating out fluxes and the angular components of the metric, the Hamiltonian

takes the form

H =
h2

λ

√

q2

g2
s

+
b2M2

π2
sin4 ψ +

[

p − M

π

(

ψ − sin 2ψ

2

)]2

. (3.30)

with the energy

E(p,q) =
h2

λ

√

q2

g2
s

+ b2

(

M

π

)2

sin2
( π

M
p
)

(3.31)

Comparing the energy in eq. (3.31) with the energy obtained from non-commutative

method in eq. (3.27) we see the agreement is very close, except with the extra coefficient
√

1 − 1/q2. In the limit where q → ∞ these two results agree exactly. The interpretation

is that in this limit the non-commutative behavior of Φi becomes unimportant and one

reaches the Abelian limit. This also happens in the examples studied in [19, 20]. For

example when N D0-branes are on top of each other in a constant four field strength Ftijk,

they will blow up into a fuzzy D2-brane. Up to the extra factor
√

1 − 1/N2, the energy

of the dielectric system matches with the energy calculated from the dual picture of a

D2-brane with magnetic fluxes wrapping a two cycle.

In the limit that M → ∞, our formula eq. (3.27) reproduces the spectrum of of (p, q)

strings in flat space-time. This is expected, since in this limit the size of S3 is very large

and the metric (2.4) approximates the metric of a flat space-time. If p = 0, we obtain the

tension of q D-strings with

TD1 =
h2

2πα′

q

gs
. (3.32)

To obtain the energy of p fundamental strings one can not simply set q = 0, since in

the non-commutative method the fundamental strings were viewed as electric flux on the

world volume of q D-strings. To obtain the energy of fundamental strings one can use the

S-dual picture, which is the subject of next section.
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4. The dielectric (p,q) strings in the S-dual picture

The IIB string theory enjoys an exact symmetry, called the S-duality. Under S-duality

transformation the strongly coupled string theory is mapped into the weakly coupled theory.

To be more specific let us denote the quantities in the S-dual picture by the superscript

S. Under the S-duality transformation gs → gS
s = 1/gs. Furthermore, the (p, q) system

is mapped into (pS , qS) = (−q, p), while B(2) S = −C(2), C(2) S = B(2) and C(4) remains

invariant.

To obtain the energy of p fundamental strings in the KS solution, we can perform

an S-duality transformation. The fundamental strings in original KS background are now

p coincident D-strings in the S-dual picture. Furthermore, in the S-dual picture with p

coincident D-strings we can turn on −q units of electric field on their world volume to

obtain the spectrum of (−q, p) strings. Our dielectric brane method used in the previous

section can now be applied again to obtain the energy spectrum. Since the S-duality is

exact these two energy spectra should be equal to each other, i.e.

T(p,q) = T S
(−q,p) (4.1)

where T(p,q) is the energy of (p, q) strings calculated in original KS background given in eq.

(3.27) while T S
(−q,p) is the energy of (pS , qS) = (−q, p) strings in the S-dual picture.

In the S-dual picture, C(2) S = B(2) = 0 at the tip of the throat, while the Kalb-

Ramond field B(2) S = −C(2) is not zero and is given by eq. (2.6). Also gS
MN = g

−1/2
s gMN ,

so h → g
−1/2
s h and R → g

−1/2
s R. There is no contribution from SCS in the action, but

there are new contributions in SDBI due to extra terms in Qi
j
S
. We have

Qi S
j = δi

j + iλ [Φi,Φj ] gkj − iλ [Φi,Φj]C
(2)
kj

≡ Qi
j + δ Qi

j (4.2)

where the first term, Qi
j, is the same as before given in eq. (3.16), while the last term is

the change in Qi
j in the S-dual picture. One can show that

(

δQ1
1 , δQ2

2 , δQ3
3

)

= −2λ2R̂

R3
(ψ − 1

2
sin 2ψ) (Φ2

2 + Φ2
3 ,Φ2

1 + Φ2
3 ,Φ2

1 + Φ2
2) (4.3)

and

δQi
j =

2λ2R̂

R3
(ψ − 1

2
sin 2ψ)Φj Φi . i 6= j (4.4)

This gives

STr
√

det(Qi
j) = p

√

√

√

√

4R4

λ2Cp
+

(

1 − M

π
√

Cp

(ψ − 1

2
sin 2ψ)

)2

(4.5)

where Cp = p2 − 1 is the Casimir associated with the p-dimensional irreducible represen-

tation of SU(2).
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Our action in the S-dual picture now takes the desired form eq. (3.7) with ∆ given by

equations (3.8) and (4.5), while Ω = 0 since C(2) S = 0. Furthermore, we have −q units of

electric fluxes so in going to Hamiltonian we set D = −q. The Hamiltonian of the system

is

HS =
h2

λ





q2

g2
s

+
1

1 − 1/p2

b2M2

π2
sin4 ψ +

[

p − 1
√

1 − 1/p2

M

π

(

ψ − sin 2ψ

2

)

]2




1/2

.(4.6)

This Hamiltonian has exactly the same form as the Hamiltonian (3.23) in the original

KS background, except Cq is replaced by Cp, i.e. 1/
√

1 − 1/q2 → 1/
√

1 − 1/p2. Following

the same steps which lead to eq. (3.27), for the energy of (−q, p) system in the S-dual

picture in the limit b2 − 1 → 0 we obtain

T S
(q,p) =

h2

λ

√

√

√

√

q2

g2
s

+ b2

(

M

π
√

1 − 1/p2

)2

sin2

(

π
√

1 − 1/p2

M
p

)

. (4.7)

Curiously enough, despite the interesting functional similarity between eq. (3.27) and

eq. (4.7), T(p,q) is not exactly equal to T S
(q,p), whereas under S-duality they must be iden-

tical. The origin of this discrepancy is the fact that under S-duality the dimension of

the irreducible representation of SU(2) has changed from q into p. This has the effect of

changing Cq into Cp. The spectrum is S-dual invariant only if Cq and Cp is replaced by q2

and p2, respectively.

One may wonder if S-duality invariance is in fact satisfied in the dual wrapped D3-brane

method. Following the calculations of [18] in the S-dual picture, one can show that indeed

the energy spectrum is S-dual invariant, i.e. ES(pS , qS) = E(p, q) where (pS , qS) = (−q, p)

and E(p, q) is given in eq. (3.31). This is expected, since the D3-brane is known to be

manifestly S-dual invariant [29].

We are now able to calculate the energy of p fundamental strings in KS solution. It is

given by setting q = 0 in eq. (4.7), which agrees with the result of [25], again except with

the extra factor 1/
√

1 − 1/p2. The stable solutions of p fundamental strings are given by

ψ =
√

1 − 1/p2
p π

M
. (4.8)

The interesting new feature is that due to the extra factor
√

1 − 1/p2 the tension of

p coincident fundamental strings does not vanish when p = M . In the analysis of [25],

when p = M the energy vanishes. From the gauge theory point of view it was argued that

fundamental strings corresponds to QCD flux tubes connecting p quarks and p anti-quarks

of SU(M) gauge theory at the tip of the conifold. When p = M , these quarks and anti-

quarks confine to create the baryon and anti-baryon and the fluxes disappear. If one to take

this argument seriously in the light of AdS/CFT correspondence, then this requires that

the square root in eq. (4.8) should be replaced by unity which is equivalent to replacing Cp

by p2. This is also supported by the S-duality invariance demand as described above.
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5. Discussion

Using the dielectric brane prescription of Myers the (p, q) strings spectrum is calculated in

KS throat. With q D-strings on top of each other, they blow up into a fuzzy two sphere.

This represents a bound state of a D3-brane with q D1-branes smeared on it. The F-

strings are incorporated in the model by turning on electric fluxes on the world volume of

D-strings. The result for energy spectrum is in interesting agreement with the dual picture,

where the (p, q) string is interpreted as a wrapped D3-brane with p units of electric flux

and q units of magnetic flux in its world volume. The agreement is exact when q → ∞, as

expected.

Since S-duality is an exact symmetry of IIB string theory, one expects that the energy

spectrum calculated in the S-dual picture is the same as in the original picture. Although

the energy spectrum has exactly the same functional form in both pictures, however there

are interesting parametric discrepancies. This is due to an interchange of the Casimir in

two pictures. In the original picture Φi represent a q-dimensional irreducible representation

of SU(2) algebra, whereas in the S-dual picture they belong to a p-dimensional irreducible

representation of SU(2) algebra. The agreement is exact only when both p, q → ∞.

This raises the question wether the dielectric brane prescription of [19] is invariant

under S-duality in IIB string theory. Obviously, to recover the S-duality in this calculations

one needs to “effectively” replace Cp and Cq by p2 and q2, respectively. One may try to

add some new terms in equations (3.3) and (3.4) to restore the S-duality. Although this

is a possibility, but it should be performed in way not to spoil the T-duality invariance

of the original prescription. The most probable cause of S-duality violation may be the

symmetric trace prescription used in (3.3) and (3.4). It is known that the symmetric trace

prescription does not agree with the full effective string action [30, 31] and corrections of

order F 6 and higher in the world-volume field strength should be added to the action. It is

interesting to know wether a better prescription for the trace operation in the non-Abelian

action can resolve the problem. If so, the benefits are two folds: not only the S-duality is

restored, but also the dielectirc calculation matches exactly with the result of dual method

for any value of q. This happens in (p, q) string case here and also for the case in [19] where

N D0-branes blow up into a D2 brane.
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